





CyborgDB is the only Vector DB that keeps inference data end-to-end encrypted—at rest, in transit, and in-use
Instantly transform existing databases like PostgreSQL, Redis, and RDS into Confidential Vector Databases
from cyborgdb_lite import Client, IndexIVFFlat
# Create a Redis-backed client
client = Client("redis", "redis://localhost")
key = secrets.token_bytes(32)
index = client.create_index("my_index", key, IndexIVFFlat(128, 1024))
from cyborgdb_lite import Client, IndexIVFFlat
# Create a Redis-backed client
client = Client("redis", "redis://localhost")
key = secrets.token_bytes(32)
index = client.create_index
("my_index", key, IndexIVFFlat(128, 1024))
#include "cyborgdb_core/client.hpp"
#include "cyborgdb_core/encrypted_index.hpp"
cyborg::Client client(DBConfig(cyborg::Location::kRedis, "redis://localhost"));
std::array<uint8_t, 32> key; //Replace with your encryption key
auto index = client.CreateIndex("my_index", key, cyborg::IndexIVFFlat(128, 1024));
#include "cyborgdb_core/client.hpp"
#include "cyborgdb_core/encrypted_index.hpp"
cyborg::Client client(DBConfig
(cyborg::Location::kRedis, "redis://localhost"));
std::array<uint8_t, 32> key;
auto index = client.CreateIndex
("my_index", key, cyborg::IndexIVFFlat(128, 1024));
Securely leverage similarity search for text, image, audio and more while guaranteeing privacy
Securely combine Private data retrieval with Gen.AI, enabling Confidential AI applications
Leverage Gen. AI and end-to-end encrypted vector retrieval for HIPAA-compliant RAG
Enable similarity queries on multimodal Protected Health Information in full compliance
Leverage encrypted vector search for secure multi-party fraud detection model inference
Offer personalized and context-augmented Gen. AI products while safeguarding financial data